Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.198
Filtrar
1.
J Dent Res ; 103(3): 308-317, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38234039

RESUMO

Neural crest cells (NCC) arise from the dorsal margin of the neural plate border and comprise a unique cell population that migrates to and creates the craniofacial region. Although factors including Shh, Fgf8, and bone morphogenetic proteins have been shown to regulate these biological events, the role of parathyroid hormone 1 receptor (Pth1r) has been less studied. We generated an NCC-specific mouse model for Pth1r and researched gene expression, function, and interaction focusing on nasal cartilage framework and midfacial development. Wnt1-Cre;Pth1rfl/fl;Tomatofl/+ mice had perinatal lethality, but we observed short snout and jaws, tongue protrusion, reduced NCC-derived cranial length, increased mineralization in nasal septum and hyoid bones, and less bone mineralization at interfrontal suture in mutants at E18.5. Importantly, the mutant nasal septum and turbinate cartilage histologically revealed gradual, premature accelerated hypertrophic differentiation. We then studied the underlying molecular mechanisms by performing RNA seq analysis and unexpectedly found that expression of Ihh and related signaling molecules was enhanced in mutant nasomaxillary tissues. To see if Pth1r and Ihh signaling are associated, we generated a Wnt1-Cre; Ihhfl/fl;Pth1rfl/fl;Tomatofl/+ (DKO) mouse and compared the phenotypes to those of each single knockout mouse: Wnt1-Cre; Ihhfl/fl;Pth1rfl/+;Tomatofl/+ (Ihh-CKO) and Wnt1-Cre;Ihhfl/+;Pth1rfl/fl;Tomatofl/+ (Pth1r-CKO). Ihh-CKO mice displayed a milder effect. Of note, the excessive hypertrophic conversion of the nasal cartilage framework observed in Pth1r-CKO was somewhat rescued DKO embryos. Further, a half cAMP responsive element and the 4 similar sequences containing 2 mismatches were identified from the promoter to the first intron in Ihh gene. Gli1-CreERT2;Pth1rfl/fl;Tomatofl/+, a Pth1r-deficient model targeted in hedgehog responsive cells, demonstrated the enlarged hypertrophic layer and significantly more Tomato-positive chondrocytes accumulated in the nasal septum and ethmoidal endochondral ossification. Collectively, the data suggest a relevant Pth1r/Ihh interaction. Our findings obtained from novel mouse models for Pth1r signaling illuminate previously unknown aspects in craniofacial biology and development.


Assuntos
Cartilagens Nasais , Crista Neural , Animais , Camundongos , Cartilagens Nasais/metabolismo , Proteínas Hedgehog/metabolismo , Diferenciação Celular , Condrócitos/metabolismo , Crânio , Camundongos Knockout
2.
Nature ; 621(7980): 716-722, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37758891

RESUMO

Einstein's general theory of relativity from 19151 remains the most successful description of gravitation. From the 1919 solar eclipse2 to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac's theory4 appeared in 1928; the positron was observed5 in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6 by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7-10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive 'antigravity' is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.

3.
J Dent Res ; 102(11): 1241-1251, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37575041

RESUMO

Cranial base synchondroses are the endochondral ossification centers for cranial base growth and thus indispensable for proper skull, brain, and midfacial development. The synchondroses are composed of mirror-image growth plates that are continuously maintained from the embryonic to postnatal stage through chondrocyte differentiation. Several factors, including Pth1r signaling, are known to control fetal synchondrosis development. However, there are currently no reports regarding any role for Pth1r signaling in postnatal cranial base and synchondrosis development. Also, the mesenchymal cells that source Pth1r signaling for synchondroses are not known. Here, we employed an inducible mouse model, a hedgehog-responsive Gli1-CreERT2 driver, focusing on the postnatal study. We performed 2 inducible protocols using Gli1-CreERT2;Tomatofl/+ mice that uncovered distinct patterning of Gli1-positive and Gli1-negative chondrocytes in the synchondrosis cartilage. Moreover, we generated Gli1-CreERT2;Pth1rfl/fl;Tomatofl/+ mice to assess their functions in postnatal synchondrosis and found that the mutants had survived postnatally. The mutant skulls morphologically presented unambiguous phenotypes where we noticed the shortened cranial base and premature synchondrosis closure. Histologically, gradual disorganization in mutant synchondroses caused an uncommon remaining central zone between hypertrophic zones on both sides while the successive differentiation of round, flat, and hypertrophic chondrocytes was observed in control sections. These mutant synchondroses disappeared and were finally replaced by bone. Of note, the mutant fusing synchondroses lost their characteristic patterning of Gli1-positive and Gli1-negative chondrocytes, suggesting that loss of Pth1r signaling alters the distribution of hedgehog-responsive chondrocytes. Moreover, we performed laser microdissection and RNA sequencing to characterize the flat proliferative and round resting chondrocytes where we found flat chondrocytes have a characteristic feature of both chondrocyte proliferation and maturation. Taken together, these data demonstrate that Pth1r signaling in Gli1-positive cells is essential for postnatal development and maintenance in cranial base synchondroses. Our findings will elucidate previously unknown aspects of Pth1r functions in cranial biology and development.


Assuntos
Ouriços , Base do Crânio , Camundongos , Animais , Proteína GLI1 em Dedos de Zinco , Cartilagem , Condrócitos , Osteogênese/genética
4.
Osteoporos Int ; 34(7): 1207-1221, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37067545

RESUMO

This study investigated the long-term survival and incidence of secondary fractures after fragility hip fractures. The 5-year survival rate was 62%, and the mortality risk was seen in patients with GNRI < 92. The 5-year incidence of secondary fracture was 22%, which was significantly higher in patients with a BMI < 20. BACKGROUND: Malnutrition negatively influences the postoperative survival of patients with fragility hip fractures (FHFs); however, little is known about their association over the long term. OBJECTIVE: This study evaluated the ability of the geriatric nutritional risk index (GNRI) as a risk factor for long-term mortality after FHFs. METHODS: This study included 623 Japanese patients with FHFs over the age of 60 years. We prospectively collected data on admission and during hospitalization and assessed the patients' conditions after discharge through a questionnaire. We examined the long-term mortality and the incidence of secondary FHFs and assessed the prognostic factors. RESULTS: The mean observation period was 4.0 years (range 0-7 years). The average age at the time of admission was 82 years (range 60-101 years). The overall survival after FHFs (1 year, 91%; 5 years, 62%) and the incidence of secondary FHFs were high (1 year, 4%; 5 years, 22%). The multivariate Cox proportional hazard analysis revealed the risk factors for mortality as older age (hazard ratio [HR] 1.04), male sex (HR 1.96), lower GNRI score (HR 0.96), comorbidities (malignancy, HR 2.51; ischemic heart disease, HR 2.24; revised Hasegawa dementia scale ≤ 20, HR 1.64), no use of active vitamin D3 on admission (HR 0.46), and a lower Barthel index (BI) (on admission, HR 1.00; at discharge, HR 0.99). The GNRI scores were divided into four risk categories: major risk (GNRI, < 82), moderate risk (82-91), low risk (92-98), and no risk (> 98). Patients at major and moderate risks of GNRI had a significantly lower overall survival rate (p < 0.001). Lower body mass index (BMI) was also identified as a prognostic factor for secondary FHFs (HR 0.88 [p = 0.004]). CONCLUSIONS: We showed that older age, male sex, a lower GNRI score, comorbidities, and a lower BI are risk factors for mortality following FHFs. GNRI is a novel and simple predictor of long-term survival after FHFs.


Assuntos
Fraturas do Quadril , Desnutrição , Humanos , Masculino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Avaliação Nutricional , Prognóstico , Desnutrição/complicações , Desnutrição/epidemiologia , Fraturas do Quadril/etiologia , Fatores de Risco , Avaliação Geriátrica , Estado Nutricional , Estudos Retrospectivos
5.
Opt Express ; 31(2): 1594-1603, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785191

RESUMO

The NV centers in a diamond were successfully created by the femtosecond laser single pulse. We also investigated the effect on the diamond lattice induced by the different laser pulse widths from both experimental and theoretical perspectives. Interestingly, in spite of the high thermal conductivity of a diamond, we found that there is a suitable pulse repetition rate of several tens kHz for the formation of NV center ensembles by the femtosecond laser pulse irradiation.

6.
Nat Commun ; 12(1): 6139, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686658

RESUMO

The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries.

7.
Nature ; 592(7852): 35-42, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790445

RESUMO

The photon-the quantum excitation of the electromagnetic field-is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6-8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen9, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S-2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation10,11, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude-with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S-2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic11-13 and gravitational14 studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.

9.
Rev Sci Instrum ; 91(9): 095104, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33003818

RESUMO

We report on the frozen-spin polarized hydrogen-deuteride (HD) targets for photoproduction experiments at SPring-8/LEPS. Pure HD gas with a small amount of ortho-H2 (∼0.1%) and a very small amount of para-D2 (∼0.001%) was liquefied and solidified by liquid helium. The temperature of the produced solid HD was reduced to about 30 mK with a dilution refrigerator. A magnetic field (17 T) was applied to the HD to grow the polarization with the static method. After the aging of the HD at low temperatures in the presence of a high-magnetic field strength for three months, the polarization froze. Almost all ortho-H2 molecules were converted to para-H2 molecules. Most remaining para-D2 molecules were converted to ortho-D2 molecules. The para-H2 and ortho-D2 molecules exhibited weak spin interactions with the HD. If the concentrations of the ortho-H2 and para-D2 were reduced appropriately at the beginning of the aging process, the aging time can be shortened. We have developed a new nuclear magnetic resonance (NMR) system to measure the relaxation times (T1) of the 1H and 2H nuclei with two frequency sweeps at the respective frequencies of 726 MHz and 111 MHz and succeeded in the monitoring of the polarization build-up at decreasing temperatures from 600 mK to 30 mK at 17 T. Automatic NMR measurements with the frequency sweeps enabled us to omit the use of a manual tuning circuit and to remove magnetic field sweeps with eddy current heat. This technique enables us to optimize the concentration of the ortho-H2 and to efficiently polarize the HD target within a shortened aging time.

10.
Physiol Res ; 69(5): 861-870, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32901491

RESUMO

The effects of exercise on mechanical hyperalgesia, joint contracture, and muscle injury resulting from immobilization are not completely understood. This study aimed to investigate the effects of cyclic stretching on these parameters in a rat model of chronic post-cast pain (CPCP). Seventeen 8-week-old Wistar rats were randomly assigned to (1) control group, (2) immobilization (CPCP) group, or (3) immobilization and stretching exercise (CPCP+STR) group. In the CPCP and CPCP+STR groups, both hindlimbs of each rat were immobilized in full plantar flexion with a plaster cast for a 4-week period. In the CPCP+STR group, cyclic stretching exercise was performed 6 days/week for 2 weeks, beginning immediately after cast removal prior to reloading. Although mechanical hyperalgesia in the plantar skin and calf muscle, ankle joint contracture, and gastrocnemius muscle injury were observed in both immobilized groups, these changes were significantly less severe in the CPCP+STR group than in the CPCP group. These results clearly demonstrate the beneficial effect of cyclic stretching exercises on widespread mechanical hyperalgesia, joint contracture, and muscle injury in a rat model of CPCP.


Assuntos
Dor Crônica/reabilitação , Contratura/reabilitação , Hiperalgesia/reabilitação , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/métodos , Animais , Moldes Cirúrgicos , Dor Crônica/etiologia , Dor Crônica/patologia , Contratura/etiologia , Contratura/patologia , Modelos Animais de Doenças , Humanos , Hiperalgesia/etiologia , Hiperalgesia/patologia , Imobilização , Masculino , Ratos , Ratos Wistar
12.
Sci Rep ; 10(1): 792, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964965

RESUMO

We demonstrate electrical detection of the 14N nuclear spin coherence of NV centres at room temperature. Nuclear spins are candidates for quantum memories in quantum-information devices and quantum sensors, and hence the electrical detection of nuclear spin coherence is essential to develop and integrate such quantum devices. In the present study, we used a pulsed electrically detected electron-nuclear double resonance technique to measure the Rabi oscillations and coherence time (T2) of 14N nuclear spins in NV centres at room temperature. We observed T2 ≈ 0.9 ms at room temperature, however, this result should be taken as a lower limit due to limitations in the longitudinal relaxation time of the NV electron spins. Our results will pave the way for the development of novel electron- and nuclear-spin-based diamond quantum devices.

13.
Sci Rep ; 9(1): 13318, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527609

RESUMO

Nitrogen-vacancy (NV) centres in diamond hold promise in quantum sensing applications. A major interest in them is an enhancement of their sensitivity by the extension of the coherence time (T2). In this report, we experimentally generated more than four dressed states in a single NV centre in diamond based on Autler-Townes splitting (ATS). We also observed the extension of the coherence time to T2 ~ 1.5 ms which is more than two orders of magnitude longer than that of the undressed states. As an example of a quantum application using these results we propose a protocol of quantum sensing, which shows more than an order of magnitude enhancement in the sensitivity.

14.
Nat Commun ; 10(1): 3766, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462631

RESUMO

Solid-state single spins are promising resources for quantum sensing, quantum-information processing and quantum networks, because they are compatible with scalable quantum-device engineering. However, the extension of their coherence times proves challenging. Although enrichment of the spin-zero 12C and 28Si isotopes drastically reduces spin-bath decoherence in diamond and silicon, the solid-state environment provides deleterious interactions between the electron spin and the remaining spins of its surrounding. Here we demonstrate, contrary to widespread belief, that an impurity-doped (phosphorus) n-type single-crystal diamond realises remarkably long spin-coherence times. Single electron spins show the longest inhomogeneous spin-dephasing time ([Formula: see text] ms) and Hahn-echo spin-coherence time (T2 ≈ 2.4 ms) ever observed in room-temperature solid-state systems, leading to the best sensitivities. The extension of coherence times in diamond semiconductor may allow for new applications in quantum technology.

15.
Osteoporos Int ; 30(11): 2333-2342, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31363794

RESUMO

To elucidate mutation spectrum and genotype-phenotype correlations in Japanese patients with OI, we conducted comprehensive genetic analyses using NGS, as this had not been analyzed comprehensively in this patient population. Most mutations were located on COL1A1 and COL1A2. Glycine substitutions in COL1A1 resulted in the severe phenotype. INTRODUCTION: Most cases of osteogenesis imperfecta (OI) are caused by mutations in COL1A1 or COL1A2, which encode α chains of type I collagen. However, mutations in at least 16 other genes also cause OI. The mutation spectrum in Japanese patients with OI has not been comprehensively analyzed, as it is difficult to identify using classical Sanger sequencing. In this study, we aimed to reveal the mutation spectrum and genotype-phenotype correlations in Japanese patients with OI using next-generation sequencing (NGS). METHODS: We designed a capture panel for sequencing 15 candidate OI genes and 19 candidate genes that are associated with bone fragility or Wnt signaling. Using NGS, we examined 53 Japanese patients with OI from unrelated families. RESULTS: Pathogenic mutations were detected in 43 out of 53 individuals. All mutations were heterozygous. Among the 43 individuals, 40 variants were identified including 15 novel mutations. We found these mutations in COL1A1 (n = 30, 69.8%), COL1A2 (n = 12, 27.9%), and IFITM5 (n = 1, 2.3%). Patients with glycine substitution on COL1A1 had a higher frequency of fractures and were more severely short-statured. Although no significant genotype-phenotype correlation was observed for bone mineral density, the trabecular bone score was significantly lower in patients with glycine substitutions. CONCLUSION: We identified pathogenic mutations in 81% of our Japanese patients with OI. Most mutations were located on COL1A1 and COL1A2. This study revealed that glycine substitutions on COL1A1 resulted in the severe phenotype among Japanese patients with OI.


Assuntos
Osteogênese Imperfeita/genética , Adolescente , Adulto , Densidade Óssea/genética , Criança , Pré-Escolar , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Estudos de Associação Genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Japão , Masculino , Mutação , Análise de Sequência de DNA , Adulto Jovem
16.
Nature ; 561(7722): 211-215, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30135588

RESUMO

In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum1,2. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line-the 1S-2P transition at a wavelength of 121.6 nanometres-have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called 'Lyman-α forest'3 of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S-2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10-8. Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine4,5 and 1S-2S transitions6,7 recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen8,9, thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements10. In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.

17.
Clin Exp Immunol ; 193(3): 313-326, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30043528

RESUMO

The roles of the microbiome and innate immunity in the pathogenesis of multiple sclerosis (MS) remain unclear. We have previously documented abnormally low levels of a microbiome-derived Toll-like receptor (TLR)2-stimulating bacterial lipid in the blood of MS patients and postulated that this is indicative of a deficiency in the innate immune regulating function of the microbiome in MS. We postulated further that the resulting enhanced TLR2 responsiveness plays a critical role in the pathogenesis of MS. As proof-of-concept, we reported that decreasing systemic TLR2 responsiveness by administering very low-dose TLR2 ligands attenuated significantly the mouse model of MS, experimental autoimmune encephalomyelitis. Studies of Toll-like receptor responses in patients with MS have been conflicting. Importantly, most of these investigations have focused on the response to TLR4 ligation and few have characterized TLR2 responses in MS. In the present study, our goal was to characterize TLR2 responses of MS patients using multiple approaches. Studying a total of 26 MS patients and 32 healthy controls, we now document for the first time that a large fraction of MS patients (50%) demonstrate enhanced responsiveness to TLR2 stimulation. Interestingly, the enhanced TLR2 responders include a significant fraction of those with progressive forms of MS, a subset of patients considered unresponsive to adaptive immune system-targeting therapies. Our results suggest the presence of a pathologically relevant TLR2 related innate immune abnormality in patients with both relapsing-remitting and progressive MS. These findings may have significant implications for understanding the role of innate immunity in the pathogenesis of MS.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Imunoterapia/tendências , Microbiota/imunologia , Esclerose Múltipla/imunologia , Receptor 2 Toll-Like/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Masculino , Camundongos , Pessoa de Meia-Idade
19.
Nature ; 557(7703): 71-75, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618820

RESUMO

In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter3-7, including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 1015 hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 × 10-12-two orders of magnitude more precise than the previous determination 8 -corresponding to an absolute energy sensitivity of 2 × 10-20 GeV.

20.
J Laryngol Otol ; 132(2): 111-116, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29343305

RESUMO

OBJECTIVE: This study evaluated the relationship between radiation and Eustachian tube dysfunction, and examined the radiation dose required to induce otitis media with effusion. METHODS: The function of 36 Eustachian tubes in 18 patients with head and neck cancer were examined sonotubometrically before, during, and 1, 2 and 3 months after, intensity-modulated radiotherapy. Patients with an increase of 5 dB or less in sound pressure level (dB) during swallowing were categorised as being in the dysfunction group. Additionally, radiation dose distributions were assessed in all Eustachian tubes using three dose-volume histogram parameters. RESULTS: Twenty-two of 25 normally functioning Eustachian tubes before radiotherapy (88.0 per cent) shifted to the dysfunction group after therapy. All ears that developed otitis media with effusion belonged to the dysfunction group. The radiation dose threshold evaluation revealed that ears with otitis media with effusion received significantly higher doses to the Eustachian tubes. CONCLUSION: The results indicate a relationship between radiation dose and Eustachian tube dysfunction and otitis media with effusion.


Assuntos
Tuba Auditiva/fisiopatologia , Neoplasias de Cabeça e Pescoço/radioterapia , Otite Média com Derrame/diagnóstico , Otite Média com Derrame/fisiopatologia , Radioterapia de Intensidade Modulada/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...